Conservative Treatment of A Follicular Ameloblastoma Of The Anterior Mandible:
A Case Report

Narjiss Akerzoul¹*, Saliha Chbicbeb²

¹Oral surgery Fellow, Department Of Oral Surgery, C.C.D.T, University Mohamed V, Rabat, Morocco
²Professor, Department Of Oral Surgery, C.C.D.T, University Mohamed V, Rabat, Morocco

Abstract

Introduction: Ameloblastoma is a tumor of odontogenic epithelium arising from remnants of dental lamina. It is a benign tumor but locally invasive affecting mandible more than maxilla.

Presentation of the case: A 36-year-old male patient reported with a swelling on the anterior mandibular area and extended to the right side of mandible. Orthopantomogram revealed a unilocular radiolucency extending from mesial side of tooth 34 to mesial side of 45. CT Scan showed the extension of the lesion in the mesio-distal axis. It also revealed the buccal cortical expansion and the preservation of the internal bone cortical. Enucleation conservative treatment was then performed under local anesthesia with extraction of the 43. The pathology report concluded a Follicular Unicystic Ameloblastoma. The patient was then followed up over a period of one year and showed a notable reduction of the size of the lesion with no signs of recurrence.

Conclusions: Conservative treatment is highly recommended in unicystic follicular patterns of ameloblastoma rather than radical treatment.

Keywords: Anterior Ameloblastoma; Conservative Treatment; Benign Tumor; Mandibular Ameloblastoma; Follicular Ameloblastoma

Received: A august 11, 2018; Accepted: September 30, 2018; Published: October *, 2018

Competing Interests: The authors have declared that no competing interests exist.

Copyright: 2018 Akerzoul N et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Correspondence to: Narjiss Akerzoul, Oral surgery Fellow, Department Of Oral Surgery, University Mohamed V, Rabat, Morocco
Introduction

Ameloblastoma was firstly described by Cusack in 1827. It is the most common benign odontogenic tumor and represents 13–54% of all benign and malignant tumors of the jaw. There is no distinct gender predilection and most cases are diagnosed in the third to fifth decades of life. While rare in children younger than age 10 years, it is relatively uncommon in the 10 to 19 year old group [1].

Ameloblastoma accounts for about 1% of all oral tumors and about 9-11% of odontogenic tumors. It is a benign tumor but locally aggressive. There is a slight male preponderance and majority of ameloblastomas occur in mandibular ramus region. Although ameloblastomas are primarily intraosseous tumors, they have been occasionally reported in soft tissues. They are classified into unicystic, multicystic (solid), peripheral and desmoplastic types. Ameloblastoma in the anterior mandible area are rare, and can progress to large size and cause facial asymmetry, displacement of teeth, malocclusion, and pathologic fractures. The aim of this paper is to report a rare case of an anterior mandibular follicular ameloblastoma and to describe its surgical management.

Case Report

A 36-year-old male patient reported with a complaint of swelling on the right side of jaw since 1 year. Initially, the swelling was small in size which gradually increased in size. It was a little bit painful but without any pus discharge. Patient had no relevant family history and had no habit of smoking.

On extra-oral examination, the swelling was noted on the anterior mandibular area and extended to the right side of mandible (to the mandibular right premolars). On intraoral examination, buccal cortical expansion was visible from tooth 34 to 45 region while the lingual cortical preserved (Figure 1). The tooth 44 was absent. The color of the overlying mucosa was normal. The lesion was firm in consistency and tender on palpation. Based on all these findings, many provisional diagnosis were made such as odontogenic adenomatoid tumor, a keratocyst or an ameloblastoma.

The patient was subjected to routine radiographic examination. Orthopantomogram revealed a unilocular radiolucency measuring about 4.0 × 3.0 cm in size extending from mesial side of tooth 34 to mesial side of 45
CT Scan was then performed and showed the extension of the lesion in the mesio-distal axis from the mesial side of 34 to mesial side of 45. It also revealed the buccal cortical expansion and the preservation of the internal bone cortical (Lingual) (Figure 2 B).

A buccal flap was raised in order to expose the lesion (Figure 3). Then enucleation conservative treatment was then performed under local anesthesia with extraction of the 43 (Figure 4). Hermetic post-operative sutures were performed after the surgery (Figure 5). The lesion specimen was then sent for histopathological analysis. The pathology report showed follicular cells and concluded a Follicular Unicystic Ameloblastoma (Figure 6). The patient was then followed up over a period of one year with no pain or discomfort noted and no signs of recurrence (Figure 7).
Figure 5 Post-operative sutures

Figure 6 Histological image showing the follicular variant of ameloblastoma

Figure 7 Follow-Up after one Month

Figure 8 (A) Figure 8 (B) One year follow-up: Clinical and radiological Complete healing with no sign of recurrence
Discussion

Ameloblastoma is a benign tumor of odontogenic epithelium principally of enamel organ-type tissue. The term ameloblastoma was coined by Ivey and Churchill. Ameloblastoma is the most common benign odontogenic tumor and represents 13–54% of all benign and malignant tumors of the jaw. The World Health Organization (WHO) defined ameloblastoma as a locally-invasive polymorphic neoplasia that often has a follicular or plexiform pattern in a fibrous stroma. Its behavior has been described as being benign, but locally aggressive [1]. Ameloblastomas account for 1% of benign tumors and cysts of the jaw. Incidence is estimated to be 0.5 cases per million person-years worldwide [2]. The study by Eversole et al. showed that ameloblastomas were classified according to the histological findings into follicular, plexiform, acanthomatous, granular cell, basal cell, squamous metaplastic, and other rare types [3, 4, 5]. Ameloblastomas are also classified into unicystic, multicystic, peripheral and desmoplastic types. Robinson on reviewing 293 cases reported site incidence of 83.7% in the mandible and 16.3% in the maxilla. Multicystic/solid is the most common form of ameloblastoma. They can present with huge swellings over the jaws which can result in disturbances in facial aesthetics and function, such as difficulty with mouth opening, swallowing, chewing, breathing, neurologic deficits, and pathologic fractures. Up to 80% of ameloblastoma cases occur in the mandible, with a predilection for the posterior mandibular region [6,7].

Radiographically solid/multicystic ameloblastoma show an expansile, radiolucent, multiloculated cystic lesion, with a characteristic “soap bubble-like” appearance. We can also find a unilocular radiolucent lesion, which was the case of our patient who presented an extensive unilocular radiolucent lesion in the anterior area of the mandible. Other findings include cystic areas of low attenuation with scattered regions representing soft tissue components. There can be thinning and expansion of the cortical plate with erosion with the displacement and resorption of adjacent teeth [8]. In our case, we observed only external bony infiltration, while the internal cortical was preserved. The bony infiltration could be correlated with various factors secreted by the ameloblast cells. Abdel sayed et al., [9,10] found an increased expression of the parathyroid hormone-related protein (PTHrP) in ameloblastoma and suggested that it has a role in local bone resorption and also provided an explanation for infiltrative growth and destructive behavior of ameloblastoma. Also, other authors found that the RANKL, tumor necrosis factor-α secreted by ameloblast cells could induce the osteoclastogenesis, which in turn provide space for it to expand [11, 12, 13].

There are several histopathological subtypes-follicular, plexiform, acanthomatous, desmoplastic, granular cell, and basal cell pattern, that may exist singly or as a combination of two or more types [12]. Follicular and plexiform are the commonly encountered variants accounting for 32.5% and 28.2% respectively; followed by the acanthomatous subtype 12.1% while desmoplastic is extremely uncommon with incidence rates ranging from 4-13%. Follicular ameloblastoma consists of discrete follicles with similarity to the stellate reticulum of enamel organ and with the varying quantity of tissue stroma. Because the follicular subtype is the most common variant, some pathologists believe that the acanthomatous, granular cell, basal cell, and desmoplastic variants are subsets of the follicular ameloblastoma [14].

Surgery is the standard treatment for ameloblastomas. Historically, the extent of resection has been controversial, comprising of two surgical options: “‘conservative’” vs. “‘radical’. The former involves enucleation/curettage of the bony cavity, while the latter involves a radical operation with appropriate margins. Advantages of enucleation include the fact that it is an outpatient procedure able to be performed by many different service providers (Oral Surgeons and ENT), since it requires no reconstruction. Historical data on simple enucleation demonstrates recurrence rates 60-90%. However, this treatment modality is currently
believed to play no role in the management of multicystic ameloblastomas, but has excellent prognosis for the unicystic follicular ameloblastoma as is in our clinical case. The "radical" surgical option is the current standard of care for multicystic ameloblastoma and includes en bloc resection with 1–2 cm bone margins and immediate bone reconstruction to help with speech and swallowing. The bony margin is defined as the distance away from the radiographic margin predicted to be disease free and oncologically safe to perform osteotomies [15, 16]. Data from 82 ameloblastoma specimens showed microscopic tumor extension 2–8 mm (mean of 4.5 mm) beyond the radiographic boundaries of the tumor. Hence recommended bone margins are 1–1.5 cm for unicystic and 1.5–2 cm for solid/multicystic histological types, and provides increased cure rates [17,18].

Conclusion

Ameloblastoma is a benign, but locally invasive odontogenic tumor with a high rate of recurrence. Treatment decisions for ameloblastoma are based on the individual patient situation and the judgment of the Oral surgeon. Resection with some safe margin is the best primary method for treating solid/multicystic ameloblastomas to avoid recurrence, but conservative treatment (enucleation) is highly recommended in unicystic follicular patterns rather than radical treatment.

References