Cancer Therapy via Targeting Warburg Effect Leads to Cancer Metabolism Depression that Promotes Efficient Treatment with Small Dosage Cytotoxic Drugs

Michail R. Ponizovskiy
Kiev, “Kiev regional p/n hospital”, Ukraine

Abstract
This work exhibits mechanism of the new method Cancer Therapy via combination “Prolonged medical starvation” with considerably decreased dosage of cytotoxic drugs which was described in detail in the article: Ponizovskiy M.R., The detailed description mechanisms of the herbs extracts operations in the new method cancer disease treatment via rearrangement of metabolism from pathologic development into normal development, Journal of Clinical Trials, 2012, v. 2, Issue 4, doi:10.4172/2167-0870.1000124. The mechanism of this method of cancer therapy operates via Warburg effect targeting. The purpose of this work is substantiation the supplementary mechanisms of efficient Cancer Therapy via combination “Prolonged medical starvation” with considerably decreased dosage of cytotoxic drugs and also substantiation advantage of this method of cancer therapy in comparison with cancer treatment with great dosage of cytotoxic drugs. There were described the biochemical and biophysical mechanisms of formations resistance to some cytotoxic drugs and recurrence cancer disease after disease remission. Also it was described the benefits of use the method “Prolonged medical starvation” with decreased dosage of cytotoxic drugs for cancer treatment. The result of this work that it was substantiated the mechanism operation of this method cancer treatment, which leads to prevention recurrence cancer disease and resistance to anticancer drugs in comparison with intensive anticancer chemotherapy with great dosages of cytotoxic drugs. Also the offered concepts of cancer therapy mechanism gave possibility to explain mechanisms of some results of experiments eliminating the doubts of the authors these experiments. As the conclusion, the offered method Cancer Therapy should be put into practical medicine after detail clinical trials.

Keywords: MMR proteins; Cellular capacitors; Remote cellular reactions; gene amplification; epigenetic changes

Peer Reviewer: Shaival K Rao, PhD, Department of Pharmacognosy, C. U. Shah College of Pharmacy & Research, Wadhwan, India

Received: May 8, 2014; Accepted: August 10, 2014; Published: September 15, 2014

Competing Interests: The authors have declared that no competing interests exist.
Copyright: 2014 Ponizovskiy M.R. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Correspondence to: Ponizovskiy M.R., “Kiev regional p/n hospital”: Ukraine, Kiev region, Vasilkov district, Voksalna str. 8. The present address of M.R.Ponizovskiy: Herschelstrasse 33, 90443 Nuernberg, Germany
Email: s.olevska@freenet.de
1. Introduction

Austrian folk healer Rudolf Breuss 1992 described the positive results of oncologic diseases treatment using “Prolong Starvation during 42 days” [1, 2]. The author was convinced of efficiency of the method cancer treatment via “Prolonged medical Starvation 42 – 45 days” by the meetings with cured patients, who obtained the folk healer Omelchenko treatment, and determined on own experience of efficiency treatment the ill man with the incurable cancer stage as well as testing the factors of this method treatment as the experiments on itself. The author has explained the mechanism of this method treatment and has substantiated this method treatment, using the offered concept of Warburg effect mechanism [3, 4, 5]. The changes, occurring in an organism, have been analysed by the author from the point of view of biochemistry and biophysics. The scientific explanation of the mechanism action of this method treatment was given using the concept of Warburg effect mechanism [3, 4, 5] (Figure 1). Also both the concept of Warburg effect mechanism and the concept of this method treatment mechanism were arisen by studies and elucidations of the mechanisms maintenance stability Internal Energy and Internal Medium in an organism and in cells of an organism as in normal stationary state as well as in quasi-stationary pathologic state of an organism [6, 7, 8]. It was considered the mechanism of remote cellular reactions due to cellular capacitors operations, which transit into contact biochemical reaction, as for carcinogenesis mechanisms as well as for cancer therapy with Warburg effect targeting [9, 10]. Besides, the explanations mechanisms stability of cellular Internal Energy, as in normal stationary state of able-bodied cells and as well as in pathologic quasi-stationary states of cancer cells, gave possibility to explain mechanism operation “Prolonged medical Starvation” with considerably decreased of cytotoxic drugs' dosage [10]. All of it gave possibility to confirm the advantage this method of cancer therapy, which is based on Warburg effect targeting, over some up-to-date methods of cancer therapy [4, 5, 10]. Meantime, author gave explanation both the mechanism decrease of medical drugs efficiency and mechanism palindromia of cancer recurrence after some medical remissions. Also the author noted that the offered method cancer therapy should be put into practice after detail clinic trials. Besides, there were explained mechanisms of results some experiments, eliminating doubts which were expressed by the authors of these experiments.

2. Material and Methods

2.1 Concept of Warburg effect mechanism for substantiation cancer therapy via Warburg effect targeting

Highlight of Warburg effect Concept [3] (Figure 1): As the result of oncogenes operation causing enormous anabolic processes in cancer tissue and the enormous consumption of energy and Acetyl–CoA for anabolic processes, it takes place the overload of “nodal point of bifurcation anabolic and catabolic processes” [NPBac] because of the remained lack of Acetyl–CoA for catabolic oxidative processes. Such shift into anabolic processes and lack Acetyl-CoA causes partial suppression of catabolic processes in cancer tissue, because some catabolic processes remain for cancer cells survival. The increase of lactic acids production is the necessary endoergonic mechanism accumulation of energy for huge anabolic processes in condition glycolysis metabolism and enormous consumption of energy for anabolic processes in cancer tissue. This concept gives possibility to explain as Warburg effect mechanism, elucidating distinction between mechanisms of Pasteur effect and of Warburg effect, as well as mechanisms of “Contact inhibition of propagating cells in norm” and of “Absence of
contact inhibition of propagating cells in malignant tumor” using also Theorell formula [3]. Besides, the offered concept gives possibility to explain the mechanisms of irrepressible tumor growth, non-healed cancer ulcer and mechanism of metastases formation [3] (Figure 1). The offered concept of Warburg effect mechanism gives possibility to explain as the mechanism operation of “Prolonged medical Starvation” from point of view of modern scientific data, and as well as the mechanisms of interaction “Prolonged medical Starvation” with considerably decrease dosage of cytotoxic drugs.

![The metabolism of a malignant tumor tissue and of a normal tissue.](image)

2.2 The distinctions of mechanisms cellular cycle between an able-bodied tissue/cells and cancer tissue/cells which cause maintenance stability Internal Energy and Internal Medium of an organism

Common mechanism of maintenance stability of Internal Energy and Internal Medium as Stationary State of an organism in norm as well as Quasi-stationary States of an organism in pathology is divided into three levels of regulative mechanism: highest level regulation, high level regulation and low level regulation [6, 7, 8] (Figure 2). There are mutual influencing mechanisms maintenance stability between an organism and cells of an organism which extend also as between all cells of an organism due their capacitors operations as well as between cells and their surrounding medium due to cellular capacitors operations for maintenance stability of Internal Medium and an Internal Energy of an organism and cells, displaying as immune defensive system [9] (Figure 2). Just the mechanism of maintenance stability basophilic chemical potential of cytoplasm (µcytopl) of each cell displays the balance of mutual influences between moderately oscillating nDNA fragmentations / reparations in nucleus and conformably moderately oscillating mtDNA fusion / fission in mitochondria, which
influence on nuclear capacitors and mitochondrial capacitors conformably [10] (Figure 2). The interactions between the related resonance waves of the nuclear capacitors and the mitochondrial capacitors create the remote reaction for maintenance of stable balance catabolic and anabolic processes in cytoplasm which induces stable basophilic chemical potential of cytoplasm (µcytopl) defining stable Internal Energy and Internal Medium of cytoplasm in normal quiescent G0 phase of cellular cycle [10] (Figure 3).
Just oscillating changes of these resisted processes, which occur both in cells and in tissues, are mutual subjected due to the central regulation of an organism promoting maintenance stability of Internal Energy [stability temperature 36.0°C – 36.9°C by which all enzymes operate] and Internal Medium [constant concentration substances in blood and in neurolymph] both in an organism and in cells of an organism in norm [10] (Figure 3). Also moderate oscillating shifts of balance anabolic
endoergonic and catabolic exoergonic processes into anabolic pathway and into catabolic pathway occur in low level of regulatory mechanism for preservation maintenance stability Stationary State of an organism. The excessive shift of the balance anabolic endoergonic and catabolic exoergonic processes into anabolic endoergonic and catabolic processes causes Quasi-Stationary State of cancer tissue creating negative fluctuation of entropy according to Glansdorff and Prigogine theory ($-\Delta x\beta$). The Quasi-Stationary State of cancer tissue is characterized by formation Warburg effect, which causes excessive proliferative processes, irresistible cancer growth, unhealed cancer wounds, metastasis and cancer cells Apoptosis Resistance [3]. Cancer mitochondria DNA produce abundance quantity Reactive Oxygen Species (ROS) in comparison with moderate quantity ROS production in normal mitochondria DNA. Just it is known that ROS induces superoxide [O2*-], and superoxide anion is subjected to dismutation by manganese superoxide dismutase (MnSOD) and copper, zinc superoxide dismutase (Cu, ZnSOD) being converted into hydrogen peroxide [H2O2] [11]. Complex ROS/H2O2 generates superoxide [O2*] inducing free radicals (*OH) [11]. Free radicals (*OH) react on nucleus DNA and induce process replication via realizing of 2nDNA in nucleus, which neutralizes Free radicals (*OH) [10]:

$$\begin{align*}
*OH + H2-nDNA-DNA &\rightarrow H2O + H•-nDNA-DNA; \\
O^+ + 2H2O &\rightarrow 2H• + 2OH^-; \\
2H•-nDNA-DNA + 2H• &\rightarrow 2nDNA-H• + 2nDNA-H•; \\
2nDNA-H• + 2*OH &\rightarrow 2nDNA + 2H2O
\end{align*}$$

The great acceleration of cellular cycle, induced by oncogene, is occurred in cancer cells. The part of complex ROS/H2O2 in mitochondria is neutralized by glutathione peroxidise (GPX) and phospholipid hydroperoxide glutathione peroxidise (PHGPX) in G1 phase oncologic cellular cycle [10, 12, 14, 15, 16, 17]. The produced excessive abundance of complex ROS/H2O2 in G2 phases oncologic cellular cycle pass through mitochondrial membranes and cytoplasm into nucleus and generates excessive abundance of superoxide [O2*] inducing excessive abundance of free radicals (*OH). The excessive free radicals influence on nuclear DNA inducing processes of permanent DNA replications which also cause neutralization of abundance complex ROS/H2O2/Free radicals (equations above) [10]. All processes of mitochondrial biogenesis are advanced due to nitric oxide both in normal cellular cycle development and in oncologic cellular cycle development exhibiting partial transfer from catabolic processes into excessive anabolic processes for cancer cells survival as Apoptosis Resistance that cause mechanism aerobic glycolysis of Warburg effect [10, 11, 18, 19, 20, 21].

2.3 The mechanism operation “Prolonged medical Starvation 42 - 45 days” in cancer therapy

Prolonged medical Starvation as the new approach to cancer therapy activates catabolic processes in an organism for maintenance stable temperature 36.0°C-37.5°C by which all enzymes operate. Cancer tumor is situated inside the human organism using the organism as Environment, and obtains the substances for its metabolism from depot of an organism (fat depots, carbohydrate depots etc.) [4, 5]. Also an organism obtains substances for its metabolism from depots of an organism in condition of treatment by “Prolonged medical Starvation (during 42-45 days)”. Besides, the treatment by “Prolonged medical Starvation (during 42-45 days)” causes considerable decrease almost of all depots (especially fat depots) of an organism. Therefore this method treatment leads to the competition between cancer tissue and an organism for the use of remained decreased depot in order to maintain the normal temperature (36.0°C-37.5°C) by which the all enzymes operate. The aerobic exothermic
oxidation generates the greatest quantity of calories and maintains stability of the normal temperature (36.0°C-37.5°C) of an organism’s Internal Energy, promoting suppression of anabolic endoergonic processes in the condition of the treatment by “Prolonged medical Starvation (during 42-45 days)” as in the organism as well as in cancer tissue. Thus this competition between the organism and the cancer must lead to the win for most strong one. But the protective forces of the organism become stronger due to support with herbal extracts, delivering vitamins and microelements into the organism. Also increase of fat metabolism from fat depot in condition of “Prolonged medical Starvation (during 42-45 days)” leads to augmentation glutathione peroxide (GPX) and phospholipid hydroperoxide glutathione peroxidise (PHGPX) in all cells of an organism and contributes to neutralization of redundant ROS in G1/S phases cellular cycle of cancer cells [10], promoting suppression DNA replication due to neutralization of ROS/free radicals in G1/S phases cellular cycle before nDNA replication in G2/M phases cellular cycle, as in an organism and as well as in cancer cells. The suppression nucleus DNA replication causes suppression of cellular cycle in cancer cells and cessation of irrepressible proliferative processes with irrepressible cancer growth. In addition, at the beginning of fasting (at 5-7 and 12-14 days) there arises the short acidophilic reaction with formation of ketonic bodies as the result of intensive fat oxidation from fat depots of the organism. As the result of β-oxidation of fat acids many Acetyl ions [CH3CHO−] are produced. The great quantity of Acetyl ions increases quantity Acetyl-CoA for catabolic processes that promote partial elimination of overload “the nodal point of bifurcation of anabolic and catabolic processes” (NPBac), causing elimination of Warburg effect. Acetyl-CoA consumption by the increased oxidative phase of metabolism (Krebs cycle) causes the decrease of excess lactic acids which accumulate energy for anabolic processes, especially needing for cancer tissue [3, 4, 5]. The cessation of the huge consumption energy and Acetyl-CoA for anabolic processes in cancer metabolism ruins the mechanism of Warburg effect and restores as balance catabolic and anabolic processes as well as the mechanism of Pasteur effect /incompatibility of aerobic processes with glycolysis/ [3, 4, 5]. The cessation of the overload of “nodal point of bifurcation anabolic and catabolic processes” [NPBac] promotes the normal excretion of synthesized high-molecular substances via oxidative processes and ruins the huge excessive Alternative excretion of synthesized high-molecular substances within cancer cells which causes metastasis and non-healing tumor ulcers formation [3, 4, 5]. The elimination of the overload of “nodal point of bifurcation anabolic and catabolic processes” [NPBac] restores “contact inhibition of cell propagation” how in the normal tissue and ruins the irrepressible tumor growth [3, 4, 5]. Thereby Warburg effect, characterizing by aerobic glycolysis, is destroyed because of expression aerobic catabolic processes and decrease anaerobic processes of glycolysis. Destruction of Warburg effect violates cancer metabolism and contributes to normal metabolism via Pasteur effect.

Thus basic phenomena of the cancer metabolism are inhibited:

a) Mechanism of “Warburg effect”.
b) Biochemical and biophysical mechanisms of metastases and non-healing tumor ulcers formation.
c) The phenomenon of “absence inhibition of contact cell propagation in the metabolism of malignant tumor” and as well as irrepressible tumor growth.

Benefits of the use “Prolonged medical Starvation” in Cancer therapy: “Prolonged medical Starvation” contributes to depression of cancer tumor metabolism that helps efficient anticancer therapy with decreased dosage of cytotoxic drugs. Such approach to anticancer chemotherapy prevents damage Internal Energy and Internal Medium both an organism and cells of an organism, preventing damage of immune and hormonal systems as the links of defensive mechanism in regulative system of an organism. Prevention damage of immune and hormonal systems as the links
of system stability Internal Energy and Internal Medium an organism prevents recurrence of cancer disease after long anticancer chemotherapy and resistance to anticancer drugs in process of intensive anticancer chemotherapy with great dosage of cytotoxic drugs.

Highlight: The huge anabolic processes with huge consumption of energy and Acetyl-CoA are characteristic for cancer tissue. These processes suppress the catabolic exoergic processes in cancer tissue retaining only the rest catabolic exoergic processes for cancer cells survival. Just “Prolonged medical Starvation” induces shift balance catabolic and anabolic processes of tissue metabolism into expression of catabolic exoergic processes for maintenance stability of Internal Energy of the organism (the stable temperature an organism 36.0°C – 37.5°C; stable parameters of PH and osmotic pressure etc. in blood and in neurolymph), that suppress anabolic endoergic processes of cancer tissue leading to tumor depression [3, 4]. “Prolonged medical Starvation” promote suppression DNA replication, due to ROS/free radicals neutralization in G1/S phases cellular cycle before nDNA replication in G2/M phases cellular cycle, as in an organism and as well as in cancer cells. The suppression nucleus DNA replication causes suppression of cellular cycle in cancer cells and cessation of irrepressible proliferative processes with irrepressible cancer growth. The use light cytotoxic herbal extract in condition of Prolonged medical Starvation leads to transition of tumor depression into damage of tumor metabolism and to cure of the patient.

2.3.1 The mechanism operation of the herbs extracts in new method of cancer treatment

Considering the above described mechanism operation of the treatment by “Prolonged medical Starvation during 42-45 days”, this method of cancer treatment leads to depression of development tumor as the result of damage the main mechanisms of cancer tumor metabolism. The crucial role of maintenance Internal Energy stability of the organism in condition of Prolonged medical Starvation appertains to the all tendered extracts of herbs as well as to the Vegetable Juice Mixture, which deliver to an organism necessary microelements and vitamins, especially folic acid, that is necessary for hemopoiesis, and decreases also acidification in the blood of the organism. It needs to pay the especial attention to the extract of red cranesbill (Geranium robertianum) which contains significant amounts of Vitamins A, B and C as well as such minerals: calcium, potassium, magnesium, iron, phosphorus, germanium, according to Shipard Isabell [22]. Besides, R.Breuss notes that red cranesbill (Geranium robertianum) contains the small quantity of radium [1, 2]. Also Shipard Isabell [22] notes that Geranium (or Herb Robert) has wide range of clinical applications as remedy with such properties: antibiotic and antiviral properties, sedative property, tonic, astringent, diuretic, digestive, antioxidant.

Thus it should be paid attention to especial importance that Geranium (or Herb Robert) is a source of germanium [22] and radium [1, 2]. Also taking into account that red cranesbill (Geranium robertianum) has antibiotic and antiviral properties [22], it can assume that red cranesbill (Geranium robertianum) has also light cytotoxic property due to content of radium which cytotoxic properties don’t raise the doubts. Thus it can assume that red cranesbill (Geranium robertianum) causes light cytotoxic property on depressed malignant tumor in condition of Prolonged Starvation 42 – 45 days, promoting cancer disease treatment and cure of patient. Such light cytotoxic property can not make negative influence on immune and hormonal systems of an organism essentially as opposed to chemotherapy with great dosage cytotoxic drugs.

2.3.2 The some footnotes concerning method of “Prolonged medical Starvation 42 - 45 days” in cancer therapy

The method cancer treatment via “Prolonged medical Starvation 42 - 45 days” and results of practical

There are the short description and explanation of preliminary preparation for following use cancer treatment via “Prolonged medical Starvation during 42 - 45 days” [4, 5, 10].

Prolonged medical Starvation should be supplemented by considerably decreased dosage cytotoxic substances! “Prolonged medical Starvation during 42 - 45 days” should be defended with the support of herbs extracts [sage, hawthorn, horse-tail, (stinging-)nettle, ninety-knot, hypericum, ergot, St.John’s wort, etc.] providing with cytotoxic activity of red cranesbill (Geranium robertianum) and used abundant liquid drink including water up to 1.5 – 2.0 liter per day. The herbal extracts should be filtered through a triple gauze layer in order that any fibre mustn’t remain in the extract. The herbal extracts fill the organism with necessary microelements and vitamins, especially folic acid, that is necessary for hemopoiesis and decreases also acidification in the blood of the organism by “Prolonged medical Starvation”. During the “Prolonged medical Starvation” it’s necessary to look after the common health state of the person and especially state of gastrointestinal tract that it occurs the bowels open /timely evacuation of excrements/, that there will not be constipation /retention of feces/. The disturbance of gastrointestinal activity should be healed with vegetable laxatives, activated charcoal, medicaments and use an enema if it’s necessary. The starvation leaving should been taken place during 7 days with gradual addition of products: juices, then watery decoctions and gels, then vegetable pulps, then baked fruits and vegetables, then liquid kasha (dish of cooked grain), then mashed potatoes, then pair of cutlets – and up to the usual nutrition. The diet shouldn’t be salted during leaving starvation.

The contraindications to the use of “Prolonged medical Starvation 42 - 45 days”.
The irreparable cancerous damage of Internal Energy and Internal Medium an organism are the basis of the contraindications to the use of the offered method cancer treatment. So the generalized excessive shift of balance anabolic and catabolic processes into the huge anabolic processes via abundant metastasis suppresses catabolic processes critically. Just catabolic processes generate energy and dissipate energy into environment promoting stability energy [36.6°C – 37. 3°C] for maintenance stability Internal Energy an organism, i.e. catabolic processes contribute to survival of an organism. Thus aggressive processes of metastatic disease create Apoptosis Resistance in cancer cells and enhance apoptotic processes in an organism. These destructive processes in the organism lead to damage of Internal Energy of the organism, i.e. the symptoms which are the contraindication to the use Prolonged medical starvation [42 – 45 days].

Thus there are the contraindications to the use of the offered method cancer treatment:
* Cachexia is the first cause of contraindication to the use of the offered method cancer treatment, because progressive loss of weight indicates the full downfall of energy forces of the organism and also full downfall of its defensive system, promoting irrepressible development of cancer tumor. Considering such physical state of the organism, the prolonged medical starvation can not deprive cancer tissue of substances for cancer metabolism.
* Full frailty of the organism is the second cause of contraindication to the use of the offered method cancer treatment. This contraindication shows symptoms both unstable equilibrium state of body and helplessness of the person. Full frailty also indicates the full downfall of energy forces of the organism and also full downfall of its defensive system, promoting irrepressible development of cancer tumor. Considering such physical state of the organism, the prolonged medical starvation can
not deprive cancer tissue of substances for cancer metabolism.

* Cancerous intoxication due to the decomposition of cancerous necrotic mass is the third cause of contraindication to the use of the offered method cancer treatment. Cancerous intoxication becomes apparent as sickness with uncontrollable vomiting, anorexia and bad physical state of the organism. Cancerous intoxication indicates irrepressible development of cancer tumor owing to the full downfall of energy forces of the organism and also full downfall of its defensive system. Considering such physical state of the organism, the prolonged medical starvation can not deprive cancer tissue of substances for cancer metabolism.

* Dangerous metastasis for life is the fourth cause of contraindication to the use of the offered method cancer treatment. There are such dangerous for life metastasis: metastasis in brain, metastasis in spinal marrow, vast metastasis in liver causing huge liver and so on.

* The tumors, which create emergency needing to urgent medical /especial surgical/ help, should not be treated with prolonged medical starvation of the new method cancer treatment before rendering first aid of urgent medical - surgical help. There are such emergency situations: large bowel obstruction [ileus], urinary obstruction, biliary tract obstruction, airways obstruction, duodenal obstruction, small bowel obstruction, and tumor location in vital center or in vital organs which can be ablated by surgical methods. It is the fifth cause of contraindication to the use of the offered method cancer treatment.

3. Results

3.1 Advantage action of small dosage cytotoxic drugs on depressed cancer metabolism for prevention cancer disease recurrence and drugs resistance to the cytotoxic effects in offered method cancer treatment over action of great dosage cytotoxic drugs in modern methods cancer therapy

Unlike the modern methods of cancer disease treatment the offered method of cancer disease treatment via “Prolonged medical Starvation with very small dosage cytotoxic drugs” does not intrude into immune and hormonal systems and does not violate the stability as an organism Internal Energy and Internal Medium as well as cells of an organism, at the same time causing the violation of cancer tumor metabolism. Therefore the offered method of cancer disease treatment via “Prolonged medical Starvation with very small dosage cytotoxic drugs” does not result in appearance of epigenetic changes and genes amplification causing drugs resistance to the cytotoxic effects and does exert cancer disease recurrence after some medical remissions which occur as the result of damage both immune and hormonal systems by great dosage cytotoxic drugs using in up-to-date methods cancer therapy. However the combination of the described offered method treatment with up-to-date methods cancer treatment should be approved in clinical condition as Clinical Trials.

Highlight: The inhibition of proliferative anabolic properties of cancer cells is achieved via the rearrangement of cancer metabolism from anabolic pathway into catabolic pathway in the treatment via “Prolonged medical Starvation”. Thus this method cancer treatment puts cancer metabolism into state of depression and preserves proliferative anabolic functions of immune and hormonal system and as well as Internal Energy and Internal Medium an organism. The light cytotoxic effect of small dosage of anticancer drugs in condition of cancer depression does not exert mechanism of drugs resistance to the cytotoxic effects and recurrence cancer disease after remission of cancer disease, but lead to destruction cancer metabolism and recovery of ill man.
4. Discussion of the benefit combination “Prolonged medical Starvation” with the decreased dosage cytotoxic drugs for efficient cancer therapy

4.1 Discussions of mechanisms drugs resistance to the cytotoxic effects due to the intensive course of treatment with the great dosage of cytotoxic therapy

4.1.1 Mechanism of Cordycepin (3′-deoxyadenosine) cytotoxic effect.

Describing mechanism of Cordycepin (3′-deoxyadenosine) cytotoxic effect, Imesch P. et al. [23] researched Cordycepin cytotoxic effect via study both transcription processes as an inhibitor of poly(A) polymerase (PAP) and DNA replication focused on MLH1 [one of the five DNA mismatch repair (MMR) proteins], i.e. processes which operate in G2/M phases of cellular cycle. Also they noted that cells with defective MMR function showed resistance to certain anticancer drugs. So Imesch P. et al. [23] found that MLH1-deficient tumor cells exhibited reduced susceptibility to apoptosis upon treatment with cordycepin, as compared to MLH1-proficient tumor cells.

Also studying cytotoxic effect of Lipoplatin (a novel liposomal cisplatin exhibiting highly effective action against cancers), Fedier A., Poyet C, et al. [24] revealed that MLH1-deficient tumor cells were less susceptible to apoptosis than MLH1-proficient tumor cells. However they noted that MLH1-deficient tumor cells showed the same sensitivity to lipoxal (a novel liposomal drug – oxaliplatin) as well as MLH1-proficient tumor cells. Besides Sergent C. et al. [25] have supposed that high-level resistance of human colon cancer cells to high doses of cisplatin and oxaliplatin does not seem to be related to acquired defects in the DNA MMR proteins.

a. Mechanisms of experiments outcomes: Cancer tissue metabolism is characterized by huge anabolic processes, promoting irressponsible proliferative processes via advance G1/S phases of cellular cycle [3, 8, 10]. Development cellular cycle requires mismatch repair (MMR) proteins (enzymes) for repairs of base-base mismatch, that occur due to DNA replication in G2/M phases cellular cycle as in MLH1-proficient tumor cells as well as in MLH1-deficient tumor cells. Therefore it can be such case by MLH1-deficient tumor cells that the function repair of DNA mismatch is distributed as among the all mismatch repair (MMR) proteins (nine genes of MMR function) as well as among the main five genes of MMR function (MLH1, PMS1, PMS2, MSH2, and MSH6). Thus the operative area of the cytotoxic drugs become wider and their cytotoxic effects are divided among these proteins decreasing dosage of cytotoxic drugs on each protein and also decreasing susceptibility to apoptosis upon treatment with these drugs. Only strong cytotoxic drugs with cytotoxic influence on both anabolic processes and catabolic processes in both G1/S and G2/M phases cellular cycle show the similar cytotoxic effects in both MLH1-deficient tumor cells and MLH1-proficient tumor cells. Besides there is the other mechanism: Remote cellular reactions between cells and cytotoxic drug, which are carried out by system of cellular capacitors exhibiting interplay between nucleus capacitors, mitochondria capacitors and other organelle capacitors connecting with cellular capacitors, precede cellular contact reactions with substances of cytotoxic drugs [9]. Remote cellular reactions set cells to accept the substance of cytotoxic drug. Also remote reactions cells cause attraction between cells and substance of cytotoxic drug which can be weaker in MLH1-deficient tumor cells than in MLH1-proficient tumor cells due to violation interactions between nDNA and mtDNA, resulting in violation operations of nucleus capacitors – mitochondria capacitors link that influence on stability basophilic chemical potential.
cytoplasm and on cellular inner membrane charge of cellular capacitors [9, 10]. Therefore the remote cellular reaction between MLH1-proficient tumor cells and cytotoxic drug can be more absolute than with MLH1-deficient tumor cells. Hence the acting of cytotoxic drug in contact reaction with MLH1-proficient tumor cells can be greater than with MLH1-deficient tumor cells. Thus MLH1-deficient tumor cells can be less susceptible to cytotoxic drug and to apoptosis than MLH1-proficient tumor cells, i.e. drug resistance occurs in MLH1-deficient tumor cells. On the other hand, the interactions between remote cellular reactions and contact cellular reactions show the following sequence of the reactions between cells and cytotoxic drug: Cellular capacitors react on substance of cytotoxic drug and promote reaction of cells on cytotoxic drug [9]. Simultaneously mutual interactions between cellular capacitors and link of nucleus capacitors – mitochondria capacitors promote rearrangement mismatch repair (MMR) function in nucleus, connecting with molecular structure of cytotoxic drug substance. Such rearrangement mismatch repair (MMR) function in nucleus can lead to such case that the operative area of the cytotoxic drug become wider due to distribution of the function reparations of DNA mismatch as among the all mismatch repair (MMR) proteins (nine genes of MMR function) as well as among the main five genes of MMR function (MLH1, PMS1, PMS2, MSH2, and MSH6) in MLH1-deficient tumor cells. Thus the drug cytotoxic effect in MLH1-deficient tumor cells is divided among the mismatch repair (MMR) proteins decreasing dosage of cytotoxic drug on each protein and also decreasing susceptibility to apoptosis upon treatment with this drug.

b. Footnote: The advantage of the combination very light cytotoxic effect of the small dosages of cytotoxic drugs [Cordycepin, Cisplatin, Lipoplatin, Lipoxal (oxaliplatin) etc.] with the offered method cancer disease treatment is that the offered method cancer disease treatment leads to depression of cancer tumor metabolism due to suppression anabolic processes, and the cytotoxic effects of the small doses drugs become stronger over the suppressed anabolic processes of cancer tumor with great dosage cytotoxic drugs in the state of cancer cells activity in modern methods cancer therapy. Just the great dosages of cytotoxic drugs show the similar cytotoxic effects as on hormonal cells and immune cells of an organism’s defensive function as well as on both MLH1-deficient tumor cells and MLH1-proficient tumor cells, i.e. they interfere in Internal Medium an organism suppressing defensive function of an organism.

4.1.2 The influences of PI3K/AKt cascade inhibitors on efficiency of cytotoxic effects caused by medical drugs and focused on MLH1-deficient tumor cells or on MLH1-proficient tumor cells

Ohta T. et al. [26] and Stathopoulos G P and Boulikas T [27] note that the PI3K/Akt cascade displays an important role in the resistance of ovarian cancer cells to cisplatin. Fedier A et al. [28] investigated interdependence between cytotoxic effect of lipoplatin and AKt inhibitor LY294005. Their outcomes showed that LY294005 /inhibitor of AKt/ decreases the efficacy of cisplatin, lipoplatin, oxaliplatin as well as lipoxal in human colorectal adenocarcinoma, but, unlike these drugs, LY294005 increases the efficacy of Docetaxel and does not affect the efficacy of 6-thioguanine. Fedier A et al. [28] prolonged the study of mechanisms AKt inhibition by LY294005 investigating the function of DNA mismatch repair (MMR) in MLH1-deficient tumor cells and in MLH1-proficient tumor cells. The results of researches show that the influence of LY294005, resulting in decreases efficiency with Cisplatin and Lipoplatin, is significantly higher in the MLH1-deficient than in the MLH1-proficient, but nearly similar efficiency with Oxaliplatin and Lipoxal. Moreover
LY294005 in the MLH1-deficient increases sensitivity with Docetaxel and decrease sensitivity with platinum compounds drugs that can not be associated with the concomitant deletion of the phospho-AktSer473 level. On the contrary, analogous changes in drug sensitivity were observed with the PI3-kinase inhibitor LY294002, but these changes were associated with complete deletion of phospho-AktSer473. Fedier A et al. [28] suppose a possible relationship between MMR-mediated with cisplatinum DNA damage and action Akt, e.g. a common target for both pathways. Simultaneously Fedier A et al. [28] express desire that the possible new property of Akt in making influences on drug sensitivity may also be proposed.

a. Mechanisms of experiments outcomes: Akt stimulates glycolysis activating hexokinase 2 (HK-2), i.e. Akt promotes the first an irreversible step in glycolysis, according to Elstrom RL et al. [29] and Gottlob K et al. [30]. Besides, Akt promotes growth factor, according to data Plas DR et al. [31, 32]. Just Akt pathway leads to produce Acetyl-CoA via stimulating gluolysis. Thus Akt stimulates both anabolic endoergic pathway and catabolic exoergic pathway which are formed from Acetyl-CoA of “nodal point bifurcation of anabolic endoergic processes and catabolic exoergic processes” /NPBab/ [3, 4] (Figure 1). Cisplatin and Lipoplatin damage cellular nucleus, violating nuclear basis of anabolic processes. However they do not put obstacles in the Akt operation of inducing catabolic exoergic processes and anabolic endoergic processes via glycolysis in cytoplasm. Really it is possibility that LY294005 /inhibitor of Akt/ decreases the efficacy of cisplatin, lipoplatin, oxaliplatin due to relationship between MMR-mediated with cisplatinum DNA damage and action PI3K/Akt inhibitors. Just both Akt inhibitor LY294005 and PI3-kinase inhibitor LY294002 violate glycolysis in cytoplasm that cause violation of mismatch repair (MMR) function due to lack of Acetyl-CoA, violating in both anabolic function (connected with nucleus function) and catabolic function (connected with mitochondrial oxidative function) and converting cells into MLH1-deficient tumor cells. Thus mechanisms operations of these drugs show that they more decrease activity in MLH1-deficient tumor cells than in MLH1-proficient tumor cells, because the function repair of DNA mismatch is distributed in MLH1-deficient tumor cells as among the all mismatch repair (MMR) proteins (nine genes with MMR function) as well as among the main five genes with MMR function (MLH1, PMS1, PMS2, MSH2, and MSH6). Therefore the operative area of these cytotoxic drugs become wider and their cytotoxic effects are divided among these proteins decreasing dosage of cytotoxic drug on each protein and also decreasing susceptibility to apoptosis upon treatment with these drugs in MLH1-deficient tumor cells. Docetaxel exhibits also strong anti-mitotic chemotherapy, i.e. Docetaxel violates both nuclear function and mitochondrial function. Therefore LY294005 in the MLH1-deficient increases sensitivity with Docetaxel and decrease sensitivity with platinum compounds.

b. Footnote: Taking into account these researches it can affirm that the advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drugs [Cisplatinn, Lipoplatin, Docetaxel etc.] with the offered method cancer disease treatment is similar to above described mechanism suppression depressed cancer metabolism with small dosage of cytotoxic drugs over suppression active cancer metabolism with great dosage cytotoxic drugs in up-to-date methods of cancer therapy which cause interference in Internal Medium of an organism suppressing defensive function of an organism.

4.1.3 Influence of radicicol, heat shock protein 90 (HSP90) inhibitor, on sensitivity to cisplatin in presence of MLH1 protein
Fedir A et al. [33] have researched the influence of radicicol, heat shock protein 90 (HSP90) inhibitor, on sensitivity to cisplatin in presence of MLH1 protein. Their data demonstrated that radicicol increased the sensitivity to cisplatin and to oxaliplatin in both MLH1-proficient cells and MLH1-deficient cells, but considerably higher in MLH1-proficient cells than in MLH1-deficient cells. Considering data that radicicol is a novel specific inhibitor for heat shock protein 90 (HSP90), they have supposed a possible functional relationship between HSP90 and MLH1, where HSP90 might affect the function of MLH1 in a way that this leads to the counter-regulation of cytotoxic pathways initiated by MMR as a consequence of the presence of DNA damage introduced by cisplatin.

a. Mechanisms of experiments outcomes: Here is the mechanism decrease generating energy for maintenance stability of Internal Energy an organism (stable temperature 36.6°C – 37.2°C by which all enzymes operate) in condition of high temperature in environment: Catabolic processes of glycolysis carry out peculiar functions, unlike the subsequent catabolic processes after “nodal point bifurcation of anabolic and catabolic pathways [NPBac]” [3]: Just catabolic processes of glycolysis generate energy. This energy is divided into anabolic and catabolic processes in “nodal point of bifurcation anabolic and catabolic processes” [NPBac], also the part of this energy is cumulated into Lactic acids for anabolic processes [3]. Thus glycolysis is the primer for both catabolic and anabolic processes. The subsequent catabolic processes, which are formed as the result bifurcation of anabolic and catabolic processes in NPBac, dissipate energy into environment for maintenance stable Internal Energy an organism, i.e. temperature 36.6°C – 37.0°C by which all enzymes operate in an organism. The stable temperature 36.6°C – 37.0°C by which all enzymes operate in condition of high temperature in environment demands of suppression generating energy via inhibition glycolysis. Thus the heat shock protein 90 (HSP90) takes part as the link in mechanism inhibition of glycolysis in condition of high temperature in environment, i.e. condition of the heat shock. However the maintenance stable temperature 36.6°C – 37.0°C by which all enzymes operate in normal temperature condition occurs via suppression of shock protein 90 (HSP90). It is achieved by radicicol as inhibitor heat shock protein 90 (HSP90). Therefore it is a possible consequence of counter-relationship between HSP90 and radicicol, which influences on balance catabolic and anabolic processes, i.e. on anti- and pro-proliferative pathways via suppression and expression of glycolysis: The radicicol induces pro-proliferative pathway in G2/M phases cellular cycle inhibiting HSP90 as well as MLH1. Just the replicative bypass in drug resistance mediated by loss of MMR can occur due to interactions between heat shock protein 90 (HSP90) or p53 (anti-proliferative pathways) and mismatch repair (MMR) mechanisms (pro-proliferative pathways). The possible functional counter-relationship between HSP90 and mismatch repair (MMR) mechanisms reflects counter-relationship between HSP90 and radicicol. Just the suppression both catabolic and anabolic processes is characterized for HSP90. On the contrary, the function of mismatch repair (MMR) mechanisms is characterized by maintenance anabolic reparative processes for the advance of G2/M phases of cellular cycle. Just influence of radicicol repairs the mismatch repair (MMR) function. Therefore suppression of HSP90 by radicicol impels mismatch repair (MMR) function, which sensitivity to cisplatin and to oxaliplatin is increased in both MLH1-proficient cells and MLH1-deficient cells. However sensitivity to cisplatin and to oxaliplatin is considerably higher in MLH1-proficient cells than in MLH1-deficient cells, because the function mismatch reparations (MMR) of DNA in MLH1-deficient cells distribute as among the all mismatch repair (MMR) proteins (nine genes with MMR function) as well as among the main five genes with MMR function (MLH1, PMS1, PMS2, MSH2, and MSH6). Thus the operative area of the cytotoxic property of cisplatin or oxaliplatin become wider and the cytotoxic effects are divided among the mismatch repair (MMR) proteins decreasing dosage of cisplatin cytotoxic effect on each protein and
also decreasing sensitivity to cisplatin or to oxaliplatin, showing more resistance to cytotoxic drugs in MLH1-deficient tumor cells than in MLH1-proficient tumor cells.

b. Footnote: The advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drug (cisplatin or oxaliplatin) with the offered method cancer disease treatment is that the offered method cancer disease treatment leads to depression of cancer tumor metabolism due to suppression anabolic processes, i.e. suppression of mismatch repair (MMR) function via partial expression HSP90 function. However the peculiarity of cancer treatment mechanism confirms that the advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drug (cisplatin or oxaliplatin) with the offered method cancer disease treatment is similar to above described mechanism suppression depressed cancer metabolism with small dosage of cytotoxic drugs over suppression active cancer metabolism with great dosage cytotoxic drugs in up-to-date methods of cancer therapy.

4.1.4 Role of MMR (human MLH1(-) and MMR-deficient in cellular responses to 5-fluorouracil and 5-fluoro-2'-deoxyuridine (FdUrd)

Meyers M et al. [34] have investigated the role of MMR (human MLH1(-) and MMR-deficient of HCT116 colon cancer cells) in cellular responses to 5-fluorouracil and 5-fluoro-2'-deoxyuridine (FdUrd). They have determined that HCT116 3-6 cells treated with a low dose of FdUrd have a 2-fold in response to cytotoxic agents: the G2 cell cycle arrested with MMR-deficient cells of HCT116 is compared to enhanced G2 cell cycle in MMR-proficient cells.

a. Mechanisms of experiments outcomes: A low dose of FdUrd had a 2-fold in response to cytotoxic agents: G2 cell cycle is arrested with MMR-deficient owing to distribution of cytotoxic effect with MMR-deficient of HCT116 cells among the all mismatch repair (MMR) proteins, unlike enhanced G2 cell cycle in MMR-proficient cells. Just remote cellular reactions set cells to accept the substance of cytotoxic drug. Also remote cellular reactions cause attraction between cells and substance of cytotoxic drugs which can be depressed in MLH1-deficient tumor cells more than in MLH1-proficient tumor cells due to violation of link nucleus capacitors – mitochondria capacitors influencing on cellular capacitors [9, 10]. Therefore the remote cellular reaction between cells and cytotoxic drugs with MLH1-proficient tumor cells can be more absolute than with MLH1-deficient tumor cells. Hence the cytotoxic drugs in contact reaction with MLH1-proficient tumor cells can show greater cytotoxic effect than with MLH1-deficient tumor cells. Thus MLH1-deficient tumor cells can be less susceptible to cytotoxic drug and to apoptosis than MLH1-proficient tumor cells, i.e. drug resistance occurs more in MLH1-deficient tumor cells.

b. Footnote: The advantage of the combination very light cytotoxic effects of a low dose of cytotoxic drug (FdUrd) with the offered method cancer disease treatment is that the offered method cancer disease treatment leads to depression of cancer tumor metabolism due to suppression anabolic processes, i.e. suppression of mismatch repair (MMR) function and partial expression catabolic function for cells survival. However it can affirm that the advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drug (FdUrd) with the offered method cancer disease treatment is similar to above described mechanism destruction depressed cancer metabolism with small dosage of cytotoxic drugs over suppression active cancer metabolism with great dosage cytotoxic drugs in up-to-date methods of cancer therapy.

4.1.5 Role bypass of DNA replication pathway in drug resistance mediated by loss of MMR
The interesting investigations were made by Moreland NJ et al. [35]. They have used aphidicolin (Ap), an inhibitor of DNA polymerases, to study the role bypass of DNA replication pathway in drug resistance mediated by loss of MMR and received aphidicolin (Ap) for sensitizing drug-resistant cancer cells, that is characterized for loss MMR. Just their experiments showed bypass of DNA replication pathway in drug resistance in situation of loss MMR, i.e. mechanism of drug resistance.

a. **Mechanisms of experiments outcomes:** The outcomes of these experiments confirm that the DNA reparative function by loss of MMR and received aphidicolin (Ap) (an inhibitor of DNA polymerases) occurs via bypass of DNA replication pathway, i.e. it can be connected as with loss of MMR functional because this function reparation is distribute as among the all mismatch repair (MMR) proteins (nine genes with MMR function) as well as among the main five genes with MMR function (MLH1, PMS1, PMS2, MSH2, and MSH6) exhibiting bypass anabolic MLH1 proliferative functions. Also bypass of DNA replication function depends on cellular capacitors [9, 10], i.e. drug resistance, mediated by loss of MMR, which displays aphidicolin (Ap) drug-resistant mechanism by sensitizing cancer cells depending on cellular remote reactions. These cellular remote reactions transit into contact biochemical reactions causing the above described mechanisms of bypass DNA replication pathway in drug resistance in situation of loss MMR.

b. **Footnote:** The advantage of the combination very light cytotoxic effects of the small dosage cytotoxic drug with the offered method cancer disease treatment is that the offered method cancer disease treatment leads to depression of cancer tumor metabolism due to suppression anabolic processes, i.e. suppression of mismatch repair (MMR) function and expression catabolic pathway. It was exhibited in Moreland NJ et al. experiments [35] with the mediated drug resistance by loss of MMR and received aphidicolin (Ap) sensitizing drug-resistant cancer cells via bypass of DNA polymerases. However it can affirm that the advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drug with the offered method cancer disease treatment is similar to above described mechanism destruction depressed cancer metabolism with small dosage of cytotoxic drugs over suppression active cancer metabolism with great dosage cytotoxic drugs in up-to-date methods of cancer therapy.

4.1.6 Role of DNA mismatch repair (MMR) function and p53 function in drugs resistance

Lin X et al. [36] experiments exhibit that DNA mismatch repair (MMR) function and p53 function are major determinants of the rate of cisplatin resistance: Loss either MMR or p53 alone increased the rate of resistance to cisplatin.

Lin X et al. [37] and Yanamadala S et al. [38] experiments exhibit that inhibition of DNA polymerase zeta via suppression of REV3 subunit, which eliminates the rate of cisplatin resistance, observed in the MLH1-deficient cells.

Moreover Yanamadala S et al. [38] expressed opinion that MMR proteins can bind to certain DNA lesions and signal p53 and create apoptosis by an unknown mechanism, using both alkylating agents and H2O2 which caused significant inhibition of mRNA synthesis in MLH1-expressing but not in MLH1-deficient cells. They suggest a novel mechanism of MLH1 in the induced p53 and apoptosis by inhibiting RNA polymerase II and influencing on damaged DNA templates.

Also Stubbert LJ et al. [39] indicate that the transcription-coupled nucleotide excision repair (TC-NER) play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair.

a. **Mechanisms of experiments outcomes:** DNA polymerase zeta takes part in somatic
hypermethylation of immunoglobulin genes, i.e. pathologic anabolic processes. Unlike DNA polymerase zeta, the mismatch repair (MMR) function and p53 prevent pathologic anabolic processes of excessive proliferative processes, exerting development of normal cellular cycle via maintenance balanced anabolic and catabolic processes in G2/M phases of cellular cycle. Thus expression DNA polymerase zeta and expression proficient mismatch repair (MMR) function or p53 cause different chemical potentials (µ) which induce the cellular capacitors into inverse cellular operations [8, 10]. Thus inhibition DNA polymerase zeta eliminates the increased rate of cisplatin resistance, induced via mechanism of MLH1-deficient cells (see above), due to inhibition excessive pathologic anabolic processes which observed in acting of DNA polymerase zeta.

b. Footnote: The advantage of the combination very light cytotoxic effects of the small dosage cytotoxic drug with the offered method cancer disease treatment is that the offered method cancer disease treatment leads to depression of cancer tumor metabolism due to suppression excessive anabolic processes, i.e. inhibition of DNA polymerase zeta and partial suppression both mismatch repair (MMR) function and p53 function. The inhibition of DNA polymerase zeta and partial suppression mismatch repair (MMR) function or p53 function of tumor suppressor causes expression of the small dosages of cytotoxic drug (cisplatin) operation. Thus it can affirm that the advantage of the combination very light cytotoxic effects of the small dosages of cytotoxic drug (cisplatin) with the offered method cancer disease treatment is similar to above described mechanism suppression depressed cancer metabolism with small dosage of cytotoxic drugs over suppression active cancer metabolism with great dosage cytotoxic drugs in up-to-date methods of cancer therapy.

4.1.7 Investigating of anticancer agents Minor groove binders (MGBs)

Investigating the interesting class of anticancer agents Minor groove binders (MGBs), Fedier A et al. [40] have chosen Brostallicin which is a synthetic O±-bromoacrylic MGB. DNA minor groove binders (MGBs) agents are the class of anticancer agents highly effective in variety of human cancers. Just the outcomes of their researches reveal that brostallicin-induced cytotoxicity does not depend on functional DNA MMR. Besides, Fedier A et al. [40] note that Brostallicin does not alkylate DNA per se but operate through the interaction with GSH/GST system. Moreover all tumor cells are characterized with higher glutathione (GSH) and glutathione-S-transferase (GST) levels, according to data Geroni et al [41]. Also glutathione (GSH) is found in cellular wall, and GST enzyme catalyzes GSH peroxidase activity, which lead to the detoxification of lipid and nucleic acid hydroperoxides, according to data Waxman DJ [42]. Also Waxman DJ [42] notes that GST enzyme exhibit a ligand binding function, which involves the non-covalent binding such substrate as heme, bilirubin, various steroids, and some lipophilic anticancer drugs. These investigations show that cytotoxic effects of Minor groove binders (MGBs) of Brostallicin does not dependns on DNA mismatch repair (MMR) mechanisms [40], and the cytotoxic effect MGB agent occurs through GSH/GST system of cellular wall and cytoplasm [41, 42].

a. Mechanisms of experiments outcomes: Causing cytotoxic effects by Brostallicin via Minor groove Binders (MGBs), the changed GSH/GST systems of cellular wall and cytoplasm influence on cellular chemical potentials (µ) of cellular capacitors [9, 10] which don’t depends on DNA mismatch repair (MMR) mechanisms. Thus the cytotoxic effects by Brostallicin via Minor groove Binders (MGBs) take part in cellular remote reaction through GSH/GST systems of cellular wall and cytoplasm, which involved also in neutralisation of ROS/H2O2/free radical in quiescent G0 and G1/S phases cellular cycle, detaining as processes DNA replication in G2/M phases cellular cycle as well as tumor excessive proliferative processes [10]. Then the cellular remote reaction transits into contact reaction [9,
as for recognizing substance of cytotoxic drug as well as for exerting subsequent processes of resistance to cytotoxic drug.

b. Footnote: The advantage of the combination very light cytotoxic effects of the small dosage cytotoxic drug (Brostallicin) with the offered method cancer disease treatment is that the offered method cancer disease leads to depression of cancer tumor metabolism due to suppression anabolic processes. The remote cellular reactions between depressed cells of cancer tumor and cytotoxic effect of Brostallicin, which are accomplished due to system of cellular capacitors operation fulfilling interplay between nucleus capacitors, mitochondria capacitors and other organelle capacitors connecting with cellular capacitors [10], precede contact reactions cells on cytotoxic drug Brostallicin [9, 10]. Remote cellular reactions of cancer depressed cells don’t prevent to accept the substance of cytotoxic drug Brostallicin by cancer cells because the depressed cancer cells in condition of Prolonged medical Starvation need for supplemental substances for their metabolism and maintenance stability basophilic chemical potential of their cytoplasm (µ) [9]. Therefore remote reaction of depressed cancer cells in condition of Prolonged medical Starvation of the offered method cancer disease treatment don’t cause drugs resistance. Thus the cytotoxic effects of the small dosage Brostallicin in contact reaction become stronger in condition of cancer cells depression over the suppressed anabolic processes of cancer cells by great dosage cytotoxic drug in the state of cells activity in modern methods cancer therapy, which show the similar cytotoxic effects as on hormonal cells and immune cells of an organism as well as on tumor cells. Damage hormonal and immune defensive reactions of an organism can lead as to recurrence cancer disease after some medical remissions, i.e. palindromia of cancer development, and as well as to resistance to anticancer drugs as the result of intensive anticancer chemotherapy with great dosages of cytotoxic drugs in cancer therapy. Just the mechanisms of offered method cancer treatment don’t damage immune and hormonal systems and don’t cause drug resistance and recurrence cancer disease after some medical remissions.

4.1.8 Role RAS/RAF/ERK pathway in drugs resistance

Piscazzi A et al. [43] have found that the essential activation of the RAS/RAF/ERK pathway may lead to resistance to sunitinib in thyroid carcinoma cells, although sunitinib inhibits selectively cell proliferation inducing cell cumulation in the G0-G1 phase and inhibits the phosphorylation of ERK1/2 in both KRAS/BRAF wild-type thyroid cancer cells and in tumor cells harboring the RET/PTC rearrangement. Furthermore they described that the activation of RAS/RAF/ERK signaling in KRAS/BRAF wild-type cells by transfection of the R12 HRAS or V600E BRAF mutants or stimulation with epithelial growth factor resulted in the loss of responsiveness to sunitinib, whereas pharmacological inhibition of MAPK kinase activity resulted in the reset sensitivity of KRAS- or BRAF-mutated cells to the multikinase inhibitor.

Also Tzu-Hurng Cheng et al. [44] researches exhibit that RAS/RAF/ERK kinase pathway regulates extracellular signal due to mediated of cyclic strain by ROS. Extracellular signals induce endothelin-1 gene.

a. Mechanisms of experiments outcomes: Just ROS/H2O2/Free radicals promote processes replication in G2 phase cellular cycle exerting process proliferation which is also induced by endothelin-1 gene [10]. These excessive processes of cancer metabolism lead to disbalance between extracellular chemical potential (µextracellular) and intracellular chemical potential (µintracellular), due to excessive expression RAS/RAF extracellular proteins. This disbalance causes inflow substances from extracellular medium into intracellular medium, according to Theorell formula, exerting G1/M phases
cellular cycle for excessive cancer proliferative processes [3] (Figure 1). Disbalance between extracellular chemical potential and intracellular chemical potential exerts immune cells activity. The influences of immune cells via their cellular capacitors operations on sunitinib molecule promote suppression of sunitinib activity and cause resistance to sunitinib via immune remote and contact reactions [8, 9]. The Ras-Raf-MEK-ERK pathway or MARK/ERK pathway is formed owing to suppression cytotoxic effect of sunitinib [8, 9]. Thus these investigations confirm the mechanism of excessive expression RAS/RAF/ERK owing to immune cells reaction on cytotoxic drug substances after some remissions of cancer disease.

4.2 Discussions of the mechanisms decrease of medical drugs efficiency via gene amplification or epigenetic changes due to treatment with great dosage of cytotoxic drugs

4.2.1 General mechanism of decrease of medical drugs efficiency in palindromia. i.e. recurrence disease after cancer disease remission

Suppression medical drugs activity occurs after multiple remissions of cancer disease, but suppression medical drugs activity does not occur in the beginning of the treatment by cytotoxic drugs. Thus mechanism of immune responses is appeared after remote reactions across distance via producing immune rearrangement in the immune cells due to multiple use anticancer drugs leading to cancer disease remission. Then remote reactions transit into contact phase of immune reactions which destroy these anticancer drugs causing decrease of medical drugs efficiency [9].

4.2.2 Interactions between gene amplification in cancer cells and immune response on cytotoxic drug in mechanisms of decreased drug efficiency

Oliveras-Ferraros C et al., [45] have evaluated the connection of HER2 gene amplification with resistance to the EGFR (HER2)-targeted of cetuximab antibody and response to combination therapies against EGFR and HER2 in wild-type KRAS tumor by patients with colorectal cancer. They noted that cetuximab-refractory wild-type KRAS squamous cell carcinoma (SCC) can be fully restored by the anti-HER2 monoclonal antibody.

a. Footnote: Thus this investigation has determined the connected resisting mechanisms amplification of HER2 gene and immune response of the EGFR (HER2)-targeted cetuximab antibody in wild-type KRAS tumor of patients with colorectal cancer. It is quite true these interactions between gene amplification in cancer cells and immune response to cytotoxic drug in mechanisms of decreased drug efficiency. Thus cetuximab suppression due to immune cells reaction exerts gene amplification that is the result of influence suppressed cytotoxic drug on DNA gene.

4.2.3 Clinical investigation of interactions between SKP2 gene amplification and SKP2 immune-expression

Li CF et al. [46] have studied clinical aggressiveness of myxofibrosarcoma and evaluated interactions between SKP2 gene amplification and SKP2 immune-expression for prognosis and independently predictive of this disease.

a. Footnote: Indeed the study of influences on gene amplification due to immune expression is most important for clinical purposes regarding prognosis of cancer disease.
4.2.4 Studies of epigenetic changes in cancer tumor

Describing epigenetic changes in cancer tumors, Zeller C and Brown R [47] expressed doubts: “Aberrant DNA methylation at CpG islands and associated epigenetic silencing are observed during the acquisition of drug resistance. However, it remains unclear whether all of the observed changes are drivers of drug resistance, causally associated with response of tumors to chemotherapy, or are passenger events representing chance of DNA methylation changes”.

a. Footnote: The DNA epigenetic changes in cancer cells could appear at current cellular cycle phases of cancer development due to oncogene influences, which were subjected to immune responses due to cellular capacitors of immune cells operations via remote cellular reactions, owing to resonance waves, transiting into contact cellular reactions and suppressing cytotoxic drug (as strange object), that results in epigenetic changes in DNA of cancer cells owing to influence of suppressed cytotoxic drugs. Thus it occurs resistance to cytotoxic drugs after a phase of cancer disease remission and lead to recurrence cancer disease [8, 9, 10].

4.2.5 Role of extracellular superoxide dismutase (EcSOD) in cancer metabolism

Studying the role of extracellular superoxide dismutase (EcSOD) in lung cancer, Teoh-Fitzgerald ML et al., [48] found that air respiration pathway in normal epithelial cells expressed through EcSOD and have an unmethylated promoter, whereas lung cancer cells displayed aberrant promoter hypermethylation and decreased chromatin accessibility. EcSOD is considerably lower in lung tumors than in normal tissue, and EcSOD promoter is hypermethylated in adenocarcinomas as compared with normal lungs. Furthermore re-expression of EcSOD attenuates malignant phenotype of lung carcinoma cells, decreasing invasion and survival considerably. However loss of EcSOD expression in lung cancer is the result of EcSOD promoter methylation leading to loss of heterozygosity (LOH) of EcSOD. It was suggested that early loss EcSOD activity may contribute to extracellular matrix (ECM) remodeling causing malignant progression.

a. Footnote: It is known that ROS/H2O2/Free radicals create cellular replication in G2 phase cellular cycle causing proliferative processes [10, 11]. However extracellular superoxide dismutase (EcSOD) does not suppress capability of intracellular superoxide dismutase in norm. Just prolonged treatment with cytotoxic drugs leads to the epigenetic changes of EcSOD hypermethylation causing by hypermethylated EcSOD promoter. The epigenetic inactivation of extracellular superoxide dismutase (EcSOD), due to aberrant promoter hypermethylation operation, should activate intracellular superoxide dismutase maintaining difference chemical potentials and charges on inner and outer cellular membranes for cellular capacitors operation [9]. Intracellular superoxide dismutase exerts processes DNA replication in norm due to promoting intracellular dismutation of superoxide [O2*-] converting superoxide into hydrogen peroxide [H2O2] and following into free radicals, which advance G2 phase cellular cycles of cancer cells [9, 10, 11]. The epigenetic changes can appear as the result of immune responses on cytotoxic drug which lead to violation of cytotoxic drugs. Then such cytotoxic drugs cause loss of EcSOD due to EcSOD promoter methylation and loss of heterozygosity (LOH) of EcSOD which lead to malignant progression and drugs resistance after a phase of cancer disease remission, causing recurrence cancer disease.

4.2.6 The investigations of role epigenetic changes in decrease cancer efficiency

Investigating operations of several cytotoxic drugs as azacitidine (Vidaza), decitabine (Dacogen),
vorinostat (Zolinza), and romidepsin (Istodax), Boumber Y and Issa JP [49] inquired: “Epigenetics in cancer: what's the future?”. Describing expected results of these drugs combination in clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors, the authors expressed doubt: “unclear mechanisms of response and resistance, and rare responses in solid tumors”.

a. Footnote: Just the mechanism decrease drugs efficiency after intensive chemotherapy with great dosage cytotoxic drugs and multiple remissions, causing epigenetic changes, depends on immune cells remote reactions on these drugs and epigenetic changes due to influences cellular remote reactions of immune cells on cancer DNA via intensive cytotoxic chemotherapy. Indeed cellular capacitors of immune cells react on cytotoxic drugs and cause suppression them. The suppressed cytotoxic drugs cause epigenetic changes in cancer nuclei, creating rearrangement nucleus DNA chemical structure of cancer cells. Thus immune cells become sensitive property to cytotoxic drugs causing suppression of cytotoxic drugs and drugs resistance after cancer disease remission.

4.2.7 Investigations of targeting cancer tumor by tumor suppressors genes

Gramling S et al. [50] noted that pharmacologically targeting cancer tumor by tumor suppressor genes has not been fruitful, because many tumor suppressors genes and oncogenes are irreversibly both commonly altered or entirely deleted during carcinogenesis, thereby making it difficult to restore gene function.

a. Footnote: Indeed many tumor suppressors genes and oncogenes operate as primers of oncogenesis. Just the oncogenesis advances according to Glansdorff and Prigogine theory resulting in nonlinear pathologic development thermodynamic system of an organism [8]. They can cause small counteractions of antitumor drugs efficiency. However these counteractions are not mechanisms of cancer drug resistance after multiple remissions of cancer disease, but such suppression medical drug can occur only in the beginning of the chemotherapy treatment. Furthermore the other such samples as putative tumor suppressor gene, antitumor protein BRM, a key SWI/SNF chromatin remodeling complex subunit, which direct and limit the execution of specific cellular programs such as differentiation and growth control, are inactivated in many tumor types according to Gramling S. et al. data [50]. Hence Gramling S. et al. reply that targeting tumor by suppressor genes is not fruitful [50]. Thus the mechanisms of tumor suppressors miRNAs, as well as the other tumor suppressors, can not be the main cause decreasing cancer drugs efficiency after multiple remissions of cancer disease. Only suppressed cancer development die to use of offered “Polonged medical starvation”, which is also treated by decreased dosage cytotoxic drugs, prevents as resistance to cytotoxic drugs as well as recurrence cancer disease after some disease remissions.

4.2.8 Investigations of participation immune mechanisms in decrease cancer efficiency

Studying antitumor efficiency of cisplatin Li X et al. [51] have noted: “despite of extraordinary activities of cisplatin against a variety of solid tumors, cis-Dichlorodiamminoplatinum (II) (cisplatin) has demonstrated capability to reduce the toxicity and enhance the circulation time of cisplatin in the clinical efficacy. Just cisplatin was incorporated into the nanoparticles with high encapsulation efficiency in core-shell structure nanoparticles, which were prepared from block copolymer of methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL). They concluded that cisplatin-loaded nanoparticles exhibited superior antitumor effect by delaying tumor growth [51]. When this drug was delivered intratumorally, significant improvement was not observed. Therefore cisplatin was administrated intraperitoneally as opposed to action of free cisplatin.
a. Footnote: Thus these investigations prove participation peritoneal immune mechanism of reticuloendothelial system in action of cisplatin for anticancer efficiency.

Acknowledgments

This article is dedicated to the memory of my daughter T.M. Ponisovska.

References

6. Ponizovskiy MR. The Central Regulation of all Biophysical and Biochemical Processes as the Mechanism of Maintenance Stability of Internal Energy and Internal Medium both in a Human Organism and in cells of an Organism,Modern Chemistry & Application, 2013, 1:doi: 10.4172/mca.1000101
11. Marie FA. The role of mtDNA damage in mitochondrial dysfunction, University of Pittsburg (defended dissertation 2011), 2011, 145p
32. Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005, 24:7435-7442
42. Waxman David J. Glutathione S-Transferases: Role in Ankylation Agent Resistance and possible Target for Modulation Chemotherapy- a Review. *Cancer Res.* 1990, 50: 6449-6454