Co-cultivation of Curcuma longa with Piriformospora indica Enhances the Yield and Active Ingredients

Ruchika Bajaj¹, Aparna Agarwal¹, Kartikeya Rajpal¹, Shobhit Asthana¹, Ram Prasad¹, Amit C. Kharkwal¹, Rajesh Kumar², Irena Sherameti³, Ralf Oelmüller³ and Ajit Varma¹*

¹ Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida- 201303, India
² Department of Horticulture (Punjab State Govt.), Balachaur, Distt. Shahid Bhagat Singh Nagar
³ Friedrich-Schiller-University Jena, Institute of General Botany and Plant Physiology, Dornburger Str. 159, 07743 Jena, Germany

Abstract
The rhizome of Curcuma longa is used in the traditional medicinal system. Its secondary metabolites curcumin and the volatile oil possess wound-healing properties and inhibitory activities against certain pathogenic fungi and bacteria. Piriformospora indica is a root endophytic fungus that colonizes many plant roots and promotes the growth. P. indica was cultivated in the 5 litre capacity fermentor under standard conditions. The filtered biomass was then mixed with raw talcum powder. The propagative buds were treated with this formulation containing both sterile and inoculated fungus. We demonstrated that co-cultivation of C. longa and P. indica resulted in pronounced productivity and enhanced secondary metabolites- curcumin and volatile oil in farmers’ field. To the authors best of knowledge this is the first report where symbiotic fungus has added value to this medicinal plant in the agricultural field.

Keywords: Piriformospora indica; Curcuma longa; volatile oil; curcumin

Peer Reviewer: Moktar Hamdi, PhD, Laboratory of Microbial Ecology and Technology, National Institute of Applied Sciences and Technology, Tunisia; Jitender Mehla, PhD, Center for Study of Biological Complexity, Virginia Commonwealth University, United States

Received: September 26, 2013; Accepted: December 13, 2013; Published: February 21, 2014

Competing Interests: The authors have declared that no competing interests exist.

Copyright: 2014 Varma A et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Correspondence to: Ajit Varma, Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Sector 125, Noida- 201303, India
Email: ajitvarma@amity.edu
Introduction

Turmeric (Curcuma longa L.) is a medicinal plant belonging to the family of Zingiberaceae and is a medicinal plant. It’s modified underground stem (rhizome) is extensively used as alternative medicines (Ayurveda, Unani and Siddha) and has a long history and is known to exhibit a variety of pharmacological effects including anti-inflammatory, anti-tumor, anti-HIV and anti-infectious activities [1-5] (Mazumder et al. 1996; Allen et al. 1998; Chan et al. 1998; Vliegen et al. 1998; Ammon and Wahl 1991). The secondary metabolite curcumin scavenges active oxygen species including superoxide, hydroxyl radical and nitric oxide [6] (Sreejayan and Rao 1997). Furthermore, the yellow powder and raw rhizome is widely used as flavoring and coloring agent in the Asian diet. Curcumin (diferuloylmethane) comprises of Curcumin I (curcumin), Curcumin II (demethoxycurcumin) and Curcumin III (bisdemethoxycurcumin), which are found to be natural antioxidants [7] (Ruby et al. 1995). Its yellow color is imparted by curcumin (diferuloylmethane), a polyphenolic pigment [8] (Cooper et al. 1994). The formulation is used as antiseptic agent and cosmeitics. Significance of the rhizome is highlighted in a recent US patent (497586).

In this communication, we report that co-cultivation of C. longa with P. indica resulted in the promotion of rhizome production, enhanced accumulation of secondary metabolites like curcumin and essential metal zinc which supports human body immunity and wound healing.

Materials and methods

Cultivation of P. indica

The fungus was mass multiplied in modified Hill and Kaefer Medium [26]. So as to get bulk culture, P. indica was cultivated in a 5 liter capacity fermenter (New Brunswick,USA). The fermenter was washed thoroughly and assembled again in place of console. After assembling and properly tightening the clamps and plugging /closing the openings with cotton and rubber bands, fermenter was made ready for sterilization by heating jacket. Various parameters were standardized and set before sterilization, such as pH, temperature and oxygen supply. Sterilization of fermenter and the medium therein was carried out at 121°C and holding time 15 to 20 minutes.

Inoculum of P. indica was developed in the Hill and Kaefer broth [26] to subsequent higher
volume to get enough inoculum for addition in the fermenter. Aseptic transfer of inoculum of *P. indica* was carried out to avoid contamination using flame near the port and using peristaltic pump, it was transferred from the flask containing inoculum. After inoculation was over, inoculation port was again aseptically closed. After inoculation with *P. indica* necessary growth conditions were set to carry mass cultivation of fungus in the controlled environment. The parameters were set as per the requirement. The pH was set to 6.7. Oxygen in the form of air was forced through air meter at the rate of 0.2 vvm. The temperature was initially set at 30°C and maintained in the narrow range of 28-30°C. Air was filtered through fibrous filter and then delivered through sparger in the form of fine air bubbles. Reservoirs containing acid and alkali were connected to the fermenter and using the pumps acid or alkali was delivered to fermenter manually as per requirement or put on automatic mode for that purpose. Impeller agitator was set at initially 100-200 rpm. Samples were removed periodically to check for the growth in the form of O.D. at 600 nm with blue filter on spectrophotometer. Microscopic observations were made to check the contamination if any [27].

Formulation

Raw talcum powder [bulk density (gm/ml) 0.40 - 0.55; pH (8 – 9); moisture (0.58); SiO₂ (60 - 62); MgO (30 - 32); Al₂O₃ (Traces); Fe₂O₃ (Traces); CaO (0.5)] obtained from western rock deserts of Rajasthan, India. It was autoclaved thrice at the intervals of 24 hours each. The biomass was thoroughly mixed with talcum powder to maintain live propagules, cfu values 10⁷ with average moisture about 12%. Talcum powder with equal amount of sterile fungal biomass served as control.

Propagative bud treatment:

50 kg Salem variety *Curcuma longa* propagative buds were thoroughly mixed with 100 g of respective formulation. 100 g Jaggery obtained from juice of *Saccharum officinarum* (Chemical composition: 60-85% Sucrose, 5-15% Glucose, variable – Fructose, 0.4% of protein, 0.1g of fat, 0.6 to 1.0g of minerals (8mg -calcium, 4mg - phosphorus and 11.4mg - iron) and traces of vitamins and amino acids) was suspended in water and was sprinkled over the treated propagative buds which served as adhesive substance. It was kept for 5 hours in shade. In June 2011, they were transferred to the field in Balachaur, Shahid Bhagat Singh Nagar District, Punjab, North India. The prescribed dose of irrigation and chemical fertilizers were given at regular interval.

Field design and preparation

The experiment was set on 1.6 hectare land. The control and treated plots were further divided into three blocks each of the area (83 x 32 square meters) in a randomized manner shown in Fig.1. There was a space of 1 meter between the two treatments which acted as the buffer zone. Rhizomes were plotted in 80 rows in each plot with a distance of 0.3 m between them. Each row had 10 seedlings.

The soil was sandy loam with pH 7.9. The fertilizer treatment to the field was 50 kg of urea, 10 tons of farmyard manure, 50 kg diammonium phosphate and 25 kg of potassium chloride (Muriate of Potash) per 0.8 hectare land.
Figure 1 (A): Formulation of *P. indica* for field trial a) A bottle containing 10-12 days grown culture of *P. indica* b) the fungus is filtered through Büchner funnel, the culture filtrate is removed c) Filtered biomass of *P. indica* d) biomass was mechanically mixed with Talcum powder (as to maintain CFU as 10^9 and moisture content 12 %).

Small volume of jaggery solution was sprinkled on rhizome. The formulated mixture was thoroughly mixed with rhizome. See material and methods

Keep this mixture in shade for 5 hours

Followed the normal practice of seed sowing

Figure 1 (B): Protocol for rhizome treatment
Root colonization

Root samples were harvested and stained following the techniques described by Dickson et al. [28] (1998) and Phillip and Hayman [29] (1970). Thoroughly washed roots were cut into small segments (1.0 cm approximately) and heated with 10% KOH solution for 15 minutes. The root segments were neutralized with 1N HCl and washed with water. The segments were stained with 0.05% trypan blue overnight and mounted in lactophenol for observation. The root-pieces were randomly picked and examined on the hemocytometer under a light microscope at the magnification of 10x – 40x (OLYMPUS CX41). Root colonization was assessed using the method proposed by Giovannetti and Mosse [30] (1980). 100 treated roots were examined and percentage colonization was calculated with the following formula:

\[
\text{Percentage Colonization} = \frac{\text{Number of root segments colonized} \times 100}{\text{Number of total segments examined}}
\]

The root colonization was further confirmed by molecular technique reported earlier [19] (Sherameti et al. 2005). To study colonization of plant roots with P. indica, RNA from turmeric roots grown in the absence or presence of P. indica was isolated with an RNA isolation kit (RNeasy; Qiagen, http://www.qiagen.com) and cDNA were synthesized using reverse transcription (RT-PCR). After reverse transcription, cDNA was amplified with gene-specific (Pitef1) and control primer pairs (actin). RT-PCR was performed by reverse transcription of 2µg of total RNA with gene-specific reverse primers. First-strand synthesis was performed with a kit (#K1631) from MBI Fermentas (http://www.fermentas.com). After PCR, the products were analyzed on 1% agarose gels and stained with ethidium bromide, and visualized bands were quantified with the Image Master Video System (Amersham, GE Life Sciences, http://www.gelifesciences.com). The transcript levels of the fungal translation elongation factor 1 (cPitef1) in the roots of colonized turmeric seedlings was compared with the levels of the plant actin nucleic acids. Primer pair used for cDNA amplification are Pitef1, ACCGTCTTGGGGTTGTATCC and TCGTCGTGTAACAAAGATG.

Yield

The rhizomes were harvested after 9 months (in
March 2012) from the date of sowing. The fresh biomass was weighed with an electronic balance.

Biochemical tests

Secondary metabolites like volatile oils, curcumin and heavy metals (Pb, Ca, Zn, As and Hg) were outsourced from FICCI Research & Analysis Centre (New Delhi, India). Standard methods and assays for the quantification of spices and condiments were described by Indian Standard Method and test for spices and condiments [31]. The whole fingers were ground to pass through a sieve with 0.5 mm apertures. The ground material (0.5 g) was extracted by refluxing for 2.5 hours with ethanol, according to procedures described in ISO 10925-1984. After cooling, the extract was filtered and made up to 100ml with ethanol rinsing in a volumetric flask. The stock solution was used directly for spectrophotometric analysis of curcuminoid pigments. The absorbance of the extract was measured at 425 nm in 1 cm cells against the alcohol blank.

Statistical analysis

The data were analyzed using the paired comparison t-test [32] (Sokal and Rohlf 1981). The three plots of control were on the left side while the treated were at the right side of the field. There was a gap of 1 meter which acted as buffer between the two treatments. Each treatment had three lines, which had 10 rhizome plants. The biochemical tests were done with replicas of three in each plot.

Results and discussion

The field trial of Curcuma longa showed a positive interaction with P. indica. Although there was no change in the pattern of leaflet formation in treated and control plants, the treated plants were greener. The analysis of chlorophyll content also validated the observation (data not given). The number of leaves in treated plants was significantly higher compared to the controls, although the heights of the stem were almost equal for both treatments (Fig 2 upper panel and Table 1).

![Figure 2 Field trial of P. indica with C. longa](image)

Table 1 Leaves, roots and rhizome yield as a result of interaction with Piriformospora indica

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>P. indica-treated</th>
<th>P value</th>
<th>% increase over control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of leaves/plant</td>
<td>4 ± 0.8</td>
<td>8 ± 0.5</td>
<td>P <0.05</td>
<td>100</td>
</tr>
<tr>
<td>Number of adventitious roots/plant</td>
<td>26 ± 1.2</td>
<td>18 ± 2.1</td>
<td>P <0.05</td>
<td>(-)30.76</td>
</tr>
<tr>
<td>Rhizome yield per block</td>
<td>8566 ± 42</td>
<td>9658 ± 36</td>
<td>P <0.05</td>
<td>12.67</td>
</tr>
</tbody>
</table>
Microscopic studies of turmeric roots treated with *P. indica* along with an untreated control using trypan blue showed extensive inter- and intra-cellular root colonization with intra cellular chlamydomospores. Hyphal colonization could be seen on the surface of roots as well as in the inter- and intra-cellular spaces of root cortex. Chlamydomospores were found as single, double, tetrad, long chains and sometimes clusters. The shape of the spores varied from round and ovoid while only a few of the spores showed typical pear shaped structure. The root colonization was ranged from 60- 70% (Fig 3). Colonized roots showed larger nuclear size than the control, which may be due to excessive gene expression or polyploidy [10] (Prasad et al. 2013).

Figure 3 (a) indicates early auto-fluorescent chlamydomospores as observed under phase contrast microscope, b) Spores observed under conventional microscope (OLYMPUS CX41), c) extracellular enlarged spores forming thick cell wall.

The morphology and shape of rhizomes are shown in Fig. 1 (lower panel). *P. indica*-treated rhizomes were bigger, shinier and contained only a few adventitious hairy roots. In contrast, untreated rhizomes were visibly smaller, dull and contained a large number of adventitious roots. The treated plants produced at-least 12.7 % higher yield than the control.

The results of the biochemical test are summarized in Table 2. The concentration of volatile oils and curcumin increased by 21% and 19% respectively in the treated rhizomes. *P. indica* is also reported to promote antifungal spilanthol in *Spilanthus calva* [33] (Rai et al. 2004), podophyllotoxins from *Linum album* [34] (Baldi et al. 2010), saponin from *Chlorophytum* sp. [35] (Gosal et al. 2010), asiaticoside from *Centella asiatica* [36] (Santheesan et. 2012) and essential oils in *Foeniculum vulgare* and *Thymus vulagis* [37,38] (Dolatabadi et al. 2011 a, b)
Table 2 Biochemical test of C. longa

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>P. indica</th>
<th>P</th>
<th>% increase over control</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>volatile oil, %, w/w</td>
<td>1.28</td>
<td>1.55</td>
<td>P<0.05</td>
<td>21.09</td>
<td>IS:1797</td>
</tr>
<tr>
<td>curcumin, %, w/w</td>
<td>3.63</td>
<td>4.32</td>
<td>P<0.05</td>
<td>19.00</td>
<td>IS:10925</td>
</tr>
<tr>
<td>lead, mg/kg</td>
<td>3.6</td>
<td>3.47</td>
<td>P>0.05</td>
<td>-3.61</td>
<td>-</td>
</tr>
<tr>
<td>cadmium, mg/kg</td>
<td><0.02</td>
<td><0.02</td>
<td>-</td>
<td>-</td>
<td>APHA 3030D3030J,1992</td>
</tr>
<tr>
<td>zinc, mg/kg</td>
<td>12.8</td>
<td>18.8</td>
<td>P<0.05</td>
<td>46.87</td>
<td>APHA 3030D3030J,1992</td>
</tr>
<tr>
<td>arsenic, mg/kg</td>
<td><0.002</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>APHA 3030D3030G,1992</td>
</tr>
<tr>
<td>mercury, mg/kg</td>
<td><0.02</td>
<td><0.02</td>
<td>-</td>
<td>-</td>
<td>APHA 3030D3030G,1992</td>
</tr>
</tbody>
</table>

In the treated rhizome the lead decreased by 3.61%, and zinc concentration enhanced by 46.87%. Other heavy metals such as cadmium, arsenic and mercury showed no change.

P. indica is a well established plant growth-promoting mycorrhiza- like fungus isolated from deserts of Rajasthan [39, 40] (Verma et al. 1998, Rai et al. 2001). The increased growth of *P. indica*-colonized plants could be associated with an enhanced nutrients uptake (especially of phosphorus and nitrogen) from the soil, observed for AM fungi. In *Arabidopsis*, upon cultivation with the fungus, the early protein was modified in endoplasmic reticulum and plasma membrane along with stimulated nitrate reduction in roots [41] (Peskan-Berghofer et al. 2004).

In particular, *P. indica* promotes phosphorus uptake and modulates nitrogen uptake from the soil [42,19] (Oelmüller et al, 2009; Sherameti et al. 2005). Sherameti et al. [19] (2005) also suggested that *P. indica* stimulates NADH dependent nitrate reductase activity in roots of *Arabidopsis* and tobacco. Enhanced enzyme activity is related with increased transcription of corresponding plant gene and helps in nitrate uptake from soil. *P. indica* is involved in the transportation of the phosphate to the host plant which takes place by a phosphate transporter (PiPT) [18,22] (Kumar et al. 2012; Pedersen et al 2013). Like in mycorrhizal associations, the fungus promotes the nutrient uptake from the soil due to a better hyphal penetration into the soil as compared to the penetration of the thicker root hairs. The colonized plants acquire phosphate from the extensive network of fine extra radical hyphae which extend beyond root depletion zones to mine new regions of the soil [43] (Yadav et al. 2010). In retreat, the plant delivers photo-assimilates to the fungus. This is a clear advantage for agriculture applications because the fungus can be applied even in anthropogenic ecosystems with high concentrations of phosphate where it also exerts plant growth promoting effects [44] (Achatz et al. 2010). *P. indica* also influences sulphate reduction leading to higher levels of sulphur-containing proteins and glutathione contents. This in turn influences resistance against biotic and abiotic stress [45] (Nongbri and Oelmüller 2013). Therefore we have to understand the interaction of root with its environment and in addition they could be used as biological agents to improve plant production system [46] (Franken 2012). Taken together, better access to soil nutrients could be the major reason for the growth-promoting effect of *P. indica* on turmeric. This is
accompanied by an increased synthesis and accumulation of secondary metabolites.

An increase in uptake of soil components is inevitably associated with the uptake of soluble ions. While some of them are essential, others such as heavy metals could be toxic. The fungus regulates the uptake and transportation of important macro-nutrients like Fe, Zn, Mg, or Cu. Several studies have demonstrated that the interaction has also a strong effect on the plant’s nitrogen metabolism, because the symbiotic interaction is accompanied by an increase uptake of nitrate [42, 47] (Oelmüller et al. 2009; Unnikumar et al. 2013). We determined heavy metal concentrations in the plants and found that their uptake is quite differently affected by *P. indica*. While uptake of zinc appears to be strongly promoted under our field conditions, that of other heavy metals is either not affected by *P. indica* or the fungus has only a minor effect on the uptake of these ions. This clearly demonstrates specificity for individual ions. It also excludes that colonization by *P. indica* results in an unspecific and uncontrolled increase in heavy metal uptake.

To summarize, *P. indica* promotes growth and development of turmeric, similar to reports for other plant species. This has agricultural implications, because the increase growth rate and better performance of the plant is associated with higher levels of curcumin, an important spice in Asia.

Acknowledgment: Authors are thankful to ICAR, New Delhi (National Fund) for providing the partial financial support. They also thank Department Horticulture, Punjab State Government for carrying out the field trial in Punjab. Special thanks are due to Mr. KS Bains for organizing the field trial and to Mr. Anil Chandra, Amity University for the statistical analysis.

References

Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signaling & Behavior. 2012, 7:1-10

37. Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A. Effects of Piriformospora indica and Sebacina

